An Atlas of Speleothem Microfabrics

L. Bruce Railsback, Department of Geology, University of Georgia.



Asmerom, Y., Polyak, V., Burns, S., and Rassmussen, J., 2007, Solar forcing of Holocene climate: new insights from a speleothem record, southwestern United States: Geology, v. 35, p. 1-4.

Ayalon, A., Bar-Mathews, M., and Kaufman, A., 2002, Climatic conditions during marine oxygen isotope stage 6 in the eastern Mediterranean region from isotopic composition of speleothems of Soreq Cave, Israel: Geology, v. 30, p. 303-306.

Baker, A., Barnes, W.L., and Smart, P.L., 1996, Speleothem luminescence intensity and spectral characteristics: Signal calibration and a record of paleovegetation change: Chemical Geology, v. 130, p. 65-76.

Baker, A., Genty, D., Dreybrodt, W., Barnes, W.L., Mockler, H.J., and Grapes, J., 1998, Testing theoretically predicted stalagmite growth rate with Recent annually laminated samples: Implications for past stalagmite deposition: Geochimica et Cosmochimca Acta, v. 62, p. 393-404.

Baker, A., Ito, E., Smart, P.L. et al., 1997, Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology, v. 136, p. 263-270.

Baker, A., Genty, D., and Smart, P.L., 1998, High-resolution records of soil humification and paleoclimatic change from variations in speleothem luminescence excitation and emission wavelengths: Geology, v. 26, p. 903-906.

Baker, A., Mockler, N.J., and Barnes, W.L., 1999, Fluorescence intensity variations of speleothem-forming groundwaters: implications for paleoclimate reconstruction: Water Resources Research, v. 35, p. 407-413.

Baker, A., Smart, P.L., and Edwards, R.L., 1995, Paleoclimate implications of mass spectrometric dating of a British flowstone: Geology, v. 23, p. 309-312.

Baker, A., Smart, P.L., Edwards, R.L., and Richards, A., 1993, Annual growth banding in a cave stalagmite: Nature, v. 364, p. 518-520.

Baker, A., Smith, C.L.; Jex, C., Fairchild, I.J., Genty, D., and Fuller, L., 2008, Annually laminated speleothems; a review: International Journal of Speleology, v. 37, p. 193-206.

Baldini, J.U.L., F. McDermott, F., Baker, A., Baldini, L.M., Mattey, D.P. and Railsback, L. Bruce, 2005, Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England: Earth and Planetary Science Letters, v. 240, p. 486-494.

Baldini, J.U.L., McDermott, F., and Fairchild, I.J., 2002, Structure of the 8200-year cold event revealed by a speleothem trace element record: Science, v. 296, p. 2203-2206.

Banner, J.L., and Musgrove, M.L., 1997, Speleothems and cements as recorders of groundwater response to climate variability: Geological Society of America Abstracts with Programs, v. 29, p. A237.

Banner, J.L., Musgrove, M., Asmerom, Y., Edwards, R.L., and Hoff, J.A., 1996, High-resolution temporal record of Holocene ground-water chemistry: Tracing links between climate and hydrology: Geology, v. 24, p. 1049-1053.

Bar-Matthews, M., Avalon, A., Matthews, A., Sass, E., and Halicz, L., 1996, Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: Implications for paleoclimate research in semiarid regions: Geochimica et Cosmochimica Acta, v. 60, p. 337-347.

Bar-Matthews, M., Matthews, A., and Avalon, A., 1991, Environmental controls of speleothem mineralogy in a karstic dolomitic terrain (Soreq Cave, Israel): Journal of Geology, v. 99, p. 189-207.

Bathurst, R.G.C., 1975, Carbonate Sediments and their Diagenesis (2nd edn.): Amsterdam, Elsevier, 658 p.

Berner, R.A., 1975, The role of magnesium in the crystal growth of calcite and aragonite from sea water: Geochimica et Cosmochimica Acta, v.39, p. 489-504.

Borsato, A. Frisia, S., Jones, B., and Van Der Borg, K., 2000, Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps: Journal of Sedimentary Research, v. 70, p. 1171-1182.

Boston, P., 2000, Life below and "out there": Geotimes, v. 45, No. 8, p. 14-17.

Broecker, W.S., Olson, E.A., and Orr, P.C., 1960, Radiocarbon measurements and annual rings in cave formations: Nature, v. 185, p. 93-94.

Brook, George A., Rafter, M.A., Railsback, L. Bruce, Sheen, Shaw-Wen, and Lundberg, Joyce, 1999, A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madagascar: The Holocene, v. 9, p. 695-705.

Broughton, P.L., 1983, Environmental implications of competitve growth fabrics in stalactitic carbonate: International Journal of Speleology, v. 13, p. 31-41.

Broughton, P.L., 1983, Secondary origin of the radial fabric in stalactitic carbonate: International Journal of Speleology, v. 13, p. 43-66.

Broughton, P.L., and Kendall, A.C., 1975, The genesis of some stalactitic crystal fabrics and the relevance to the origin of limestone cements: Geological Society of America Abstracts with Programs, v. 7, p. 1010-1011.

Burns, S.J., Matter, A., Frank, N., and Mangini, A., 1998, Speleothem-based paleoclimate record from northern Oman: Geology, v. 26, p. 499-502.

Burns, S.J., Fleitman, D., Matter, A., Neff, U., and Mangini, A., 2001, Speleothem evidence from Oman for continental pluvial events during intergalcial periods: Geology, v. 29, p. 623-626.

Burton, E.A., and Walter, L.M., 1987, Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control?: Geology, v. 15, p. 111-114.

Caballero, E., Jimenez de Cisneros, E., and Reyes, E., 1996, A stable isotope study of cave seepage waters: Applied Geochemistry, v. 11, p. 581-586.

Cabrol, P., and Coudray, J., 1982, Climatic fluctuations influence the genesis and diagenesis of carbonate speleothems in southwestern France: National Speleological Society Bulletin, v. 44, p. 112-117.

Carrasco, F., Andreo, B., Bena Vente, J., and Vadillo, I., 1995, Chemistry of the water in the Nerja Cave System, Andalusia, Spain: Cave and Karst Science, v. 21, p. 27-32.

Carozzi, A.V., 1993, Sedimentary Petrography: Englewood Cliifs, NJ, PTR Prentice Hall, 263 p.

Cazolli, M.A., Forti, P., and Betazzi, L., 1988, L'Accrescimento di alabastri calcarei in Grotte Gessose: Nuovi dati dall'inghiottitoio dell'Acquefredda: Estratto da Sottoterra, N. 80, p. 16-23.

Cerling, T.E., and J. Quade, 1993, Stable carbon and oxygen isotopes in soil carbonates, in Swart, P.K., Lohmann, K.C., McKenzie, J.A., and Savin, S.M., eds., Climate Change in Continental Isotopic Records, Washington, D.C., American Geophysical Union Geophysical Mono- graph, v. 78, p. 217-231.

Chafetz, H.S., and Butler, J.C., 1980, Petrology of recent caliche pisolites, spherulites, and speleothem deposits from central Texas: Sedimentology, v. 27, p. 497-518.

Chafetz, H.S., Rush, P.F., and Utech, N.M., 1991, Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system: Sedimentology, v. 38, p. 107-126.

Chafetz, H.S., Wilkinson, B.H., and Love, K.M., 1985, Mineralogy and composition of non-marine carbonate cements in near-surface settings, in N. Schneidermann and P.M. Harris, eds., Carbonate Cements: Society of Economic Paleontologists and Mineralogists Special Publication 36, p. 337-347.

Cheng, H., et al., 2000, The half-lives of uranium-234 and thorium-230: Chemical Geology, v. 169, p. 17-33.

Craig, K.D., Horton, P.D., and Reams, M.W., 1984, Clastic and solutional boundaries as nucleation surfaces for aragonite in speleothems: National Speleological Society Bulletin, v. 46, p. 15-17.

Culver, D.C., and White, W.B., 2004, Encyclopedia of Caves: Elsevier, 696 p.

Dabous, A.A., and Osmond, J.K., 2000, U/Th study of speleothems from the Wadi Sannur Cavern, Eastern Desert of Egypt: Carbonates and Evaporites, v. 15, p. 1-6.

Deal, D.E., 1966, Mud stalagmites in Jewel Cave, South Dakota: National Speleological Society Bulletin, v. 28, no. 2, p. 106-107.

Dill, R.F., Land, L.S., Mack, L.E., and Schwarcz, H.P., 1998, A submerged stalactite from Belize: petrography, geochemistry, and geochronology of massive marine cementation: Carbonates and Evaporites, v. 13, p. 189-197.

Davies, M., 1970, A Sandstone Speleothem: Cwmbran Caving Club Journal, v. 6, p. 9-10.

Dennis, P.F., Rowe, P.J., and Atkinson, T.C., 2001, The recovery and isotopic measurement of water from fluid inclusions in speleothems: Geochimica et Cosmochimica Acta, v. 65, p. 871-884.

Dorale, J.A., González, L.A., Reagan, M.K., Pickett, D.A., Murrell, M.T., and Baker, R.G., 1992, A high-resolution record of Holocene climate change in speleothem calcite fron Cold Water Cave, northeast Iowa: Science, v. 258, p. 1626-1630.

Dorale, J.A., Edwards, R.L., Ito, E., and González, L.A., 1998, Climate and vegetation history of the Midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA: Science, v. 282, p. 1871-1874.

Dorale, J.A., and Liu, Z., 2009, Limitations of Hendy Test criteria in judging the paleoclimatic suitability of speleothems and the need for replication: Journal of Cave and Karst Studies, v. 71, p. 73-80.

Dreybrodt, W., 1980, Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems: Chemical Geology, v. 29, p. 89-105.

Dreybrodt, W., and Franke, H.W., 1987, Wachstumsgfeschwindigkeit und Durchmesser von Kerzenstalagmiten (Growth rates and measurements of tapered stalagmites): Die Höhle, v. 38, p. 1-6.

Dreybrodt, W., 1999, Chemical kinetics, speleothem growth and climate: Boreas, v. 28, p. 347-356.

Dreybrodt, W., 2008, Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O-CO2-CaCO3 solution and the related isotopic composition of calcite in stalagmites: Geochimica et Cosmochimica Acta, v. 72, p. 4712-4724.

Drysdale, R., et al., 2006, Late Holocene drought responsible for the collapse of Old World civilzations is recorded in an Italian cave flowstone: Geology, v. 34, p. 101-104.

Drysdale, R.N., et al., 2007, Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial: Geology, v. 35, p. 77-80.

Dulinski, M., et al., 1995, Stable isotope composition of spelean calcites and gaseous CO2 from Tylicz (Polish Carpathians): Chemical Geology, v. 125, p. 271-280.

Edwards, R.L., J.H. Chen, and G.J. Wasserburg, 1986/87,238U-234U-230-232Th systematics and the precise measurement of time over the past 500000 years: Earth Planetary Science Letters, v. 81, p. 175-192.

Elkins, J.T., 2002, Use of δ13C values of soil organic matter found in speleothems as a new proxy for paleovegetation and interpreting paleoclimate: Ph.D. Dissertation, University of Georgia (available online).

Even, H., Carmi, I., Magaritz, M., and Gerson, R., 1986, Timing the transport of water through the upper vadose zone in a karstic system above a cave in Israel: Earth Surface Processes and Landforms, v. 11, p. 181-191.

Fairchild, I.J., et al., 1997, Combining isotopic and trace element data to interpret paleoclimates from speleothems: Geological Society of America Abstracts with Programs, v. 29, p. A171.

Finch, A.A., Shaw, P.A., Weedon, G.P., and Holmgren, K., 2001, Trace element variaton in speleothem aragonite: potential for palaeoenvironmental reconstruction: Earth and Planetary Science Letters, v. 186, p. 255-267.

Fischbeck, R., 1976, Mineralogie und geochemie carbonatischer ablagerungen in europäischen höhlen - ein beitrag zur bildung und diagenese von speleothemen: Neues Jahrbuch Mineralogie Abhandlungen, v. 126, p. 269-291.

Folk, R.L., 1959, Practical petrographic classification of limestones: American Association of Petroleum Geologists Bulletin, v. 43, p. 1-38.

Folk, 1962, Spectral subdivision of limestone types, in Ham, W.E., ed., Classification of Carbonate Rocks-A Symposium: American Association of Petroleum Geologists Memoir 1, p. 62-84.

Folk, R.L., 1974, The natural history of crystalline calcium carbonate: effect of magnesium content and salinity: Journal of Sedimentary Petrology, v. 44, p. 40-53.

Folk, R.L., and Assereto, R., 1976, Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in the Holocene speleothem, Carlsbad Caverns, New Mexico: Journal of Sedimentary Petrology, v. 46, p. 486-496. (Discussion and Reply in v. 47, p. 1397-1401 (1977))

Frappier, A., Sahagian, D., González, L.A., and Carpenter, S.J., 2002, El Nino events recorded by stalagmite carbon isotopes: Science, v. 298, p. 565.

Frisia, S., 1996, Petrographic evidences of diagenesis in some speleothems: some examples: Speleochronos, No. 7, p. 21-30.

Frisia, S., Borsato, A., Fairchild, I.J., and McDermott, F., 2000, Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland: Journal of Sedimentary Research, v. 70, p. 1183-1196.

Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F., and Selmo, E.M., 2002, Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France): Environment, fabrics, and carbonate geochemistry: Journal of Sedimentary Research, v. 72, p. 687-699.

Frumkin, A., Carmi, I., Gopher, A., et al., 1999, A Holocene millennial-scale climatic cycle from a speleothem in Nahal Qanah Cave, Israel: The Holocene, v. 9, p. 677-682.

Fuller, L., Baker, A., et al., 2008, Isotope hydrology of dripwaters in a Scottish cave and implications for stalagmite palaeoclimate research: Hydrol. Earth Syst. Sci., v. 12, p. 1065-1074.

Gascoyne, M., 1992, Palaeoclimate determination from cave calcite deposits: Quaternary ScienceReviews, v. 11, p. 609-632.

Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., and Hamelin, B., 2001, Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems: Geochimica et Cosmochimica Acta, v. 65, p. 3443-3457.

Genty, D., and Massault, M., 1999, Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France - Modelling and comparison with other stalagmite records: Geochimica et Cosmochimica Acta, v. 63, p. 1537-1548.

Genty, D., and Quinif, Y., 1996, Annually laminated sequences in the internal structure of some Belgian stalgmites - importance for paleoclimatology: Journal of Sedimentary Research, v. 66, p. 275-288.

Genty, D., Quintif, Y., and DeFlandre, G., 1994, Microsequences de lamines annuelles dans deux stalagmites du Massif de Han-sur-Lesse (Belgique): Speleochronos, No. 6, p. 9-22.

Given, R.K., and Wilkinson, B.H., 1985, Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates: Journal of Sedimentary Petrology, v. 55, p. 109-119.

Goede, A., and Vogel, J.C., 1991, Trace element variations and dating of a Late Pleistocene Tasmanian speleothem: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 88, p. 121-131.

Goede, A., Veeh, H.H., Ayliffe, L.A., 1990, Late Quaternary palaeotemperature records for two Tasmanian speleothems: Australian Journal of Earth Sciences, v. 37, p. 267-278.

González, L.A., Carpenter, S.J., and Lohmann, K.C, 1992, Inorganic calcite morphology: roles of fluid chemistry and fluid flow: Journal of Sedimentary Petrology, v. 62, p. 382-399. (Also see Kendall, 1993)

González, L.A., Carpenter, S.J., and Lohmann, K.C, 1993, Columnar calcite in speleothems: Reply: Journal of Sedimentary Petrology, v. 63, p. 553-556.

González, L.A, and Lohmann, K.C., 1988, Controls on mineralogy and composition of spelean carbonates: Carlsbad Caverns, New Mexico: in James, N.P., and Choquette, P.W., eds., Paleokarst: New York, Springer-Verlag, p. 81-101.

Griffiths, M.L., et al., 2010, Evidence for Holocene changes in Australian-Indonesian monsoon rainfall from stalagmite trace element and stable isotope ratios: Earth and Planetary Science Letters, v. 292, p. 27-38.

Grossman, E.L., and Ku, T.-L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects: Chemical Geology, v. 59, p. 59-74.

Harmon, R.S., Atkinson, T.C., and Atkinson, J.L., 1983, The mineralogy of Castleguard Cave, Columbia Icefields, Alberta, Canada: Arctic Alpine Research, v. 15, p. 503-516.

Harmon, R.S., and Curl, R.E., 1978, Preliminary results on growth rate and paleoclimate studies of a stalagmite from Ogle Cave, New Mexico: National Speleological Society Bulletin., v. 40, p. 25-26 (disc. & reply, v. 40, p. 123-124).

Harmon, R.S., Schwarcz, H.P., and Ford, D.C., 1978, Stable isotope geochemistry of speleothems and cave waters from the Flint Ridge-Mammoth Cave system, Kentucky: Implications for terrestrial change during the period 230,000 to 100,000 years B.P.: Journal of Geology, v. 86, p. 373-384.

Harmon, R.S., Thompson, P., Schwarcz, H.P. et al., 1978, Late Pleistocene paleoclimates of North America as inferred from stable isotope studies of speleothems: Quaternary Research, v. 9, p. 54-70.

Harmon, R.S., Thompson, P., Schwarcz, H.P., and Ford, D.C., 1975, Uranium-series dating of speleothems: National Speleological Society Bulletin, v. 37, p. 21-33.

Hellstrom, J.C., and McCulloch, 2000, Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem: Earth and Planetary Science Records, v. 179, p. 287-297.

Hendy, C.H., 1971, The isotopic geochemistry of speleothems, 1. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators: Geochimica et Cosmochimica Acta, v. 35, p. 801-824. (see Dorale & Liu 2009 above.)

Hendy, C.H., and Wilson, A.T., 1968, Paleoclimatic data from speleothems: Nature, v. 219, p. 48-51.

Hennig, G.J., Grun, H., and Brunnacker, K., 1983, Speleothems, travertines, and paleoclimates: Quaternary Research, v. 20, p. 1-29.

Hill, C.A., and Forti, P., 1997, Cave Minerals of the World (2nd edn): Huntsville, National Speleological Society, 463 p.

Holland, H.D., Kirispu, T.V., Huebner, J.S., and Oxburgh, U.M., 1964, On some aspects of the chemical evolution of cave waters: Journal of Geology, v. 72, p. 36-67.

Holmgren, K., Karlen, W., and Shaw, P.A., 1995, Paleoclimatic significance of the stable isotopic composition and petrology of a Late Pleistocene stalagmite from Botswana: Quaternary Research, v. 43, p. 320-328.

Holzkämper, S., et al., 2009, Late Pleistocene stalagmite growth in Wolkberg Cave, South Africa: Earth and Planetary Science Letters,v. 282, p. 212-221.

Hose, L.D., 1996, Hydrology of a large, high relief, subtropical cave system: Sistema Purificación, Tamaulipas, México: Journal of Cave and Kart Studies, v. 58, p. 22-29.

Huang, Y., and Fairchild, I.J., 2001, Partitioning of Sr2+ and Mg2+ into calcite under karst-analog experimental conditions: Geochimica et Cosmochimica Acta, v. 65, p. 47-62.

Jex, C., et al., 2008, Hyperspectral imaging of speleothems: Quaternary International, v. 187, p. 5-14.

Jones, B., and Kahle, C.F., 1995, Origins of endogenetic micrite in karst errains: a case study from the Cayman Islands: Journal of Sedimentary Research, v. 65, p. 283-293.

Jones, B., and Motyka, A., 1987, Biogenic structures and micrite in stalactites from Grand Cayman Island, British Indies: Canadian Journal of Earth Sciences, v. 24, p. 1402-1411.

Kasama, T., and Murakami, T, 2001, The effect of microoranisms on Fe precipitation rates at neutral pH: Chemical Geoogy, v. 180, p. 117-128.

Kendall, A.C., 1993, Columnar calcite in speleothems: Discussion: Journal of Sedimentary Petrology, v. 63, p. 550-552.

Kendall, A.C., & Broughton, P.L., 1978, Origin of fabrics in speleothems composed of columnar calcite crystals: Journal of Sedimentary Petrology, v. 48, p. 519-538.

Kendall, A.C., and Iannace, A., 'Sediment'-cement relationships in a Pleistocene speleothem from Italy: a possible analogue for 'replacement' cements and Archaeolithoporella in ancient reefs: Sedimentology, v. 48, p. 681-698.

Kim, S. T. and O'Neil, J. R., 1997, Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates: Geochimica et Cosmochimica Acta, v. 61, p. 3461-3475.

Kitano, Y., and Oomori, T., 1971, The coprecipitation of uranium with calcium carbonate: Journal of the Oceanographic Society of Japan, v. 27, p. 34-43.

Kostecka, A., 1993, Calcite from the Quaternary spring waters at Tylicz, Krynica, Polish Carpathians: Sedimentology, v. 40, p. 27-39.

Klimchouk, A.B., Ford, D.C., Palmer, A.N., and Dreybrodt, W., eds., 2000, Speleogenesis: Evolution of Karst Aquifers: Huntsville, National Speleological Society, 527 p.

Lachniet, M.S., 2009, Climatic and environmental controls on speleothem oxygen-isotope values: Quaternary Science Reviews, v. 28, p. 412-432.

Lachniet, M.S., et al., 2004, Tropical response to the 8200 B.P. cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica: Geology, v. 32, p. 957-960.

Latham, A.G., Schwarcz, H.P., and Ford, D.C., 1986, The paleomagnetism and U-Th dating of Mexican stalagmite, DAS2: Earth and Planetary Science Letters, v. 79, p. 195-207.

Lauritzen, S.-E., 2003, Reconstructing Holocene climate records from speleothems, in Mackay, A., Battarbee, R., Birks, J., and Oldfield, F., eds., Global change in the Holocene, London: Arnold, p. 242-263.

Li, B., Yuan, D.X., Qin, J.M. et al., 2000, Oxygen and carbon isotopic characteristics of rainwater, drip water and present speleothems in a cave in Guilin area, and their environmental meanings: Science in China (Series D).v. 43, p. 277-285.

Li, H.-C., et al., 2005, 87Sr/ 86Sr abd Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago: Geochimica et Cosmochimica Acta, v. 69, p. 3933-3947.

Li, W.X., Lundberg, J., Dickin, A.P. et al., 1989, High-precision mass spectrometer uranium-series dating of cave deposits and implication for palaeoclimatic studies: Nature, v. 339, p. 534-536.

Linge, H., et al., 2001, Stable Isotope Stratigraphy of a Late Last Interglacial Speleothem from Rana, Northern Norway: Quaternary Research, v. 56, p. 155-164.

Linge, H., et al., 2001, Stable isotope stratigraphy of Holocene speleothems: examples from a cave system in Rana, northern Norway: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 167, p. 209-224.

Lowe, D. and Waltham, T., 1995, A Dictionary of Karst and Caves: British Cave Research Association Cave Studies Series 6, 36 pp.

Lundberg, J., and Ford, D.C., 1994, Late PLeistocene sea level change in the Bahamas from mass spectrometric U-series dating of submerged speleothem: Quaternary Science Reviews, v. 13, p. 1-14.

Maire, R., and Quinif, Y., 1991, Mise en evidence des deux derniers interglaciaires (Stades 5 and 7) dans les Alpes Francaises du Nord d'aprés l'étude des remplissages endokarstiques (Haut-Giffre, Platé, Chartreuse): Speleochronos, No. 3., p. 3-10.

Malott, C.A., and Shrock, R.R., 1933, Mud stalagmites: American Journal of Science, 5th series, v. 25, n. 145, p. 55-60.

Martin-Garcia, R., Alonso-Zarza, A.M.; Martin-Perez, A., 2009, Loss of primary texture and geochemical signatures in speleothems due to diagenesis; evidences from Castanar Cave, Spain: Sedimentary Geology, v. 221, p. 141-149.

McDermott, F., 2004, Palaeo-climate reconstruction from stable isotope variations in speleothems: a review: Quaternary Science Reviews, v. 23, p. 901-918.

McDermott, F., Frisia, S., Huang, Y., Longinelli, A., Spiro, B., Heaton, T.H.E., Hawkesworth, C.J., Borsato, A., Keppens, E., Fairchild, I.J.,van der Borg, K.,Verheyden, S., and Selmo, E., 1999, Holocene climate variability in Europe: Evidence from δ 18O, textural and extension-rate variations in three speleothems: Quaternary Science Reviews, v. 18, p. 1021-1038.

McDermott, F., Schwarcz, H., and Rowe, P.J., 2006, Isotopes in speleothems, in Leng, M.J., ed., Isotopes in Palaeoenvironmental Research: Dordercht, Springer, p. 185-225.

McGarry, S.F., and Caseldine, C., 2004, Speleothem Palynology:an undervalued tool in Quaternary studies: Quaternary Science Reviews, v. 23, p. 2389-2404.

Meece, D.E., and Benninger, L.K., 1993, The coprecipitation of Pu and other radionuclides with CaCO3: Geochimica et Cosmochimica Acta, v. 57, p. 1447-1458.

Mickler, P.J., Banner, J.L., Stern, L., Asmerom, Y., Edwards, R.L., and Ito, E., 2004, Stable isotope variations in modern tropical spe- leothems: Evaluating equilibrium vs. kinetic isotope effects: Geochi- mica et Cosmochimica Acta, v. 68, p. 4381-4393.

Mickler, P.J., Stern, L.A., and Banner, J.L., 2006, Large kinetic isotope effects in modern speleothems: Geological Society of America Bulletin, v. 118, p. 65-81.

Mühlinghaus, C., Scholz, D., and Mangini, A., 2007, Modelling stalagmite growth and δ13C as a function of drip interval and temperature: Geochimica et Cosmochimica Acta, v. 71, p. 2780-2790.

Mühlinghaus, C., et al., 2009, Modelling fractionation of stable isotopes in stalagmites: Geochimica et Cosmochimica Acta, v. 73, p.7275-7289.

Milliman, J.D., Hook, J.A., and Golubic, S. 1985, Meaning and usage of micrite cement and matrix - reply to discussion: Journal of Sedimentary Petrology, v. 55, p. 777-778.

Mills, J.P., 1965, Petrography of Selected Speleothems of Carbonate Caverns: M.S. Thesis, University of Kansas, 47 p. + 9 plates.

Moore, G.W., 1956, Aragonite speleothems as indicators of paleotemperatures: American Journal of Science, v. 254, p. 746-753.

Moore, G.W., 1962, The growth of stalactites: National Speleological Society Bulletin, v. 24, p. 95-106.

Moore, G.W., & Sullivan, B.G.N., 1978, Speleology: Zephyrus, 150 p.

Murray, J.W., 1954, The deposition of calcite and aragonite in caves: Journal of Geology, v. 62, p. 481-492.

Musgrove, M.L., Banner, J.L., Mack, L.E., Combs, D.M., James, E.W., Cheng, H., and Edwards, R.L., 2001, Geochronology of late Pleistocene to Holocene speleothems from central Texas: Implications for regional paleoclimate: Geological Society of America Bulletin, v. 113, p. 1532-1543.

Oster, J.L., Montanez, I.P., Guilderson, T.P., Sharp. W.D., and Banner, J.L., 2010, Modeling speleothem δ13C variability in a central Sierra Nevada cave using 14C and 87Sr/86Sr: Geochimica et Cosmochimica Acta, v. 74, p. 5228-5242.

Palmer, A.N., 1991, Origin and morphology of limestone caves: Geological Society of America Bulletin, v. 103, p. 1-21.

Perrete et al., 2000, Comparative study of a stalagmite sample by stratigraphy, laser induced flourescence spectroscopy, EPR spectromoetry and reflectance imaging: Chemical Geology, v. 162, p. 221-243.

Pobeguin, Th. (1965). Sur les concretions calcaires Observées dans la Grotte de Moulis (Ariège). Société Géologique de la France, Compte Rendu, v. 241, p. 1791-1793.

Polyak, V.J., Cokendolpher, J.C., Norton, R.A., Asmeron, Y., Wetter and cooler late Holocene climate in the southwestern United States from mites preserved in stalagmites: Geology, v. 29, p. 643-646.

Prinz, A., 1908, Les cristallizations des grottes de Belgique: Nouveaux Memoires de la Société Belge de Géologie de Paléontologie et d'hydrologie, Serie IN-4, p. 1-90.

Quade, J., 2004, Isotopic records from ground-water and cave speleothem calcite in North America, in A. Gillespie, S. C. Porter, and B. F. Atwater, eds., Developments in Quaternary Science, v. 1, p. 205-219.

Quinif, Y., 1989, Datation d'un interstade au sein de la derniere glaciation: la séquence stalagmatique de la Galerie Gillet (Grotte du Pere Noel, Massif de Han-sur-Lesse, Belgique: Speleochronos, No. 1, p. 23-28.

Rafter, M.A., 1997, Petrographic and geochemical analyses of two Republic of Madagascar speleothems as potential records of climate: M.S. Thesis, University of Georgia, 186 p.

Railsback, L. B., 1999, Patterns in the compositions, properties, and geochemistry of carbonate minerals: Carbonates and Evaporites, v. 14, p. 1-20.

Railsback, L.B., Brook, G.A., Chen, J., Kalin, R., and Fleisher, C.J., 1994, Environmental controls on the petrology of a Late Holocene speleothem from Botswana with annual layers of aragonite and calcite: Journal of Sedimentary Research, v. A64, p. 147-155.

Railsback, L.B., Brook, G.A., and Webster, J.W., 1999, Petrology and paleoenvironmental significance of detrital sand and silt in a stalagmite from Drotsky's Cave, Botswana: Physical Geography, v. 20, p. 331-347.

Railsback, L.B., Dabous, A.A., Osmond, J.K., and Fleisher, C.J., 2002, Petrographic and geochemical screening of speleothems for U-series dating: an example from recrystallized speleothems from Wadi Sannur Cavern, Egypt: Journal of Cave and Karst Studies, v. 64, p. 108-116.

Railsback, L.B., Sheen, S.-W., Rafter, M.A., Brook, G.A. and Kelloes, C., 1997, Diagenetic replacement of aragonite by aragonite in speleothems: criteria for its recognititon from Botswana and Madagascar: Speleochronos, No. 8, p. 3-11.

Rezak, R., and Lavoie, D.L., eds., 1993, Carbonate Microfabrics: New York, Springer-Verlag, 313 p.

Rihs, S., Condomines, M., and Poidevin, J.-L., 2000, Long-term behaviour of continental hydrothermal systems: U-series study of hydrothermal carbonates from the French Massif Central (Allier Valley): Geochimica et Cosmochimica Acta, v. 64, p. 3189-3199.

Roberts, M.S., Smart, P.L., and Baker, A., 1998, Annual trace element variations in a Holocene speleothem: Earth and Planetary Science Letters, v. 154, p. 237-246.

Rocques, H., 1963, Observations physio-chimiques sur les eaux d'alimentation de quelques concrétions: Annals de Spéléologie, v. 18, p. 377-404.

Rogers, B.W., and Williams, K.M., 1982, Mineralogy of Lilburn Cave, Kings Canyon National Park, California: National Speleological Society Bulletin, v. 44, p. 23-31.

Romanek, C.S., Grossman, E.L., and Morse, J.W., 1992, Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation: Geochimica et Cosmochimica Acta, v. 56, p. 419-430.

Romanov, D., Kaufmann, G., and Dreybrodt, W., 2008, &delta13C profiles along growth layers of stalagmites: comparing theoretical and experimental results: Geochimica et Cosmochimica Acta, v. 72, p. 438-448.

Scholle, P. A., 1978, A Color Illustrated Guide to Carbonate Rock Constituents, Textures, Cements, and Porosities: American Association of Petroleum Geologists Memoir 27, 241 p.

Schwarcz, H.P., 1986, Geochronology and isotope geochemistry of speleothems, in Fritz, P., and Fontes, J.C., eds., Handbook of Environmental Isotope Geochemistry, v. 2, p. 271-303.

Schwarcz, H.P., Harmon, R.S., Thompson, P., and Ford, D.C., 1976, Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance: Geochimica et Cosmochimica Acta, v. 40, p. 657-665.

Shopov, Y.Y., Ford, D.C., and Schwarcz, H.P., 1994, Luminescent microbanding in speleothems: high-resolution chronology and paleoclimate: Geology, v. 22, p. 407-410.

Self, C.A, and Hill, C.A., 2003, How speleothems grow: an introduction to the ontogeny of cave minerals: Journal of Cave and Karst Studies, v. 65, p. 130-151.

Siegel, F.R., 1965, Aspects of calcium carbonate deposition in Great Onyx Cave, Kentucky: Sedimentology, v. 4, p. 285-299.

Siegel, F.R., Dort, W., Jr. (1966). Calcite-aragonite speleothems from a hand-dug cave in northeast Kansas: International Journal of Speleology, v. 2, p. 165-169.

Slyotov (Sletov), V.A., 1985, Concerning the ontogeny of crystallictite and helictite aggregates of calcite and aragonite from the karst caves of southern Fergana: Novye Dannye o Mineralakh CCCP (New Data on Minerals), Nauka, Moscow, v. 32, p. 119-127. In Russian. English translation 1999, Cave Geology, v. 2, no. 4, p. 196-208.

Spötl, C., Mangini, A., Frank, N., Eistädter, R., and Burns, S.J., 2002, Start of the last interglacial period at 135 ka: Evidence from a high Alpine speleothem: Geology, v. 30, p. 815-818.

Springer, G., 2002, Reconstructing ancient climates with speleothems: NSS News, v. 60, p. 118.

Sundqvist, H.S., et al., 2007, Stable isotope variations in stalagmites from northwestern Sweden document climate and environmental changes during the early Holocene: The Holocene, v. 17, p. 259-267.

Talma, A.S. and Vogel, J.C., 1992, Late Quaternary paleotemperatures derived from a speleothem from Cango Caves, Cape Province, South Africa: Quaternary Research, v. 37, p. 203-213.

Tankersley, K.B., Munson, C.A., Munson, P.J., Shaffer, N.R., and Leininger, R.K., 1990, The mineralogy of Wyandotte Cave aragonite, Indiana, and its archaeological significance, in Lasca, N.P., and Donahue, J., eds., Archaeological Geology of North America: Boulder, CO., Geolological Society of America Centennial Special Volume 4, p. 219-230.

Thrailkill, J., 1971, Carbonate deposition in Carlsbad Caverns: Journal of Geology, v. 79, p. 683-695.

Thrailkill, J., 1976, Speleothems, in Walter, M.R., ed., Stromatolites: Amsterdam, Elsevier, p. 73-86.

Treble P., Shelley, J.M.G., Chappell, J., 2003, Comparison of high resolution sub-annual records of trace elements in a modern (1911-1992) speleothem with instrumental climate data from southwest Australia: Earth and Planetary Science Letters, v. 216, p. 141-153.

Turgeon, S., & Lundberg, J., 2001, Chronology of discontinuities and petrology of speleothems as paleoclimatic indicators of the Klamath Mountains, southwest Oregon, USA: Carbonates and Evaporites, v. 16, p. 153-167.

Uggeri, A., Bini, A., and Quinif, Y., 1991, Contribution of isotope geochemistry to the study of the climatic and environmental evolution of Monte Campo die Fiori Massif (Lombardy, Italy): Speleochronos, No. 3, p. 17-28.

van Beynen, P., Bourbonniere, R., Ford, D., and Schwarcz, H., 2001, Causes of colour and fluorescence in speleothems: Chemical Geology, v. 175, p. 319-341.

van Beynen, P., et al., 2008, Paleoclimate reconstruction derived from speleothem strontium and δ13C in Central Florida: Quaternary International, v. 187, p. 76-83.

Verheyden, S., 2004, Trace elements in speleothems: a short review of the state of the art: International Journal of Speleology, v. 33, p. 95-101.

Verheyden, A., Keppens, E., Fairchild, I.J., McDermott, F., and Weis, D., 2000, Mg, Sr, and Sr isotope geochemistry of a Belgian Holocene speleothem: implications for paleoclimate reconstructions: Chemical Geology, v. 169, p. 131-144.

Wang Kejun, 1989, Paleo-temperature study for some cave deposits in Guilin: Carsologica Sinica, v. 8, p. 222-225.

Wang, Y.J., Cheng, H., Edwards, R.L. et al., 2001, A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China: Science, v. 294: p. 2345-2348.

Watanabe, Y., et al., 2010, Comparison of stable isotope time series of stalagmite and meteorological data from west Java, Indonesia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 293, p. 90-97.

Wiedner, E., et al., 2008, Investigation of the stable isotope fractionation in speleothems with laboratory experiments: Quaternary International, v. 187, p. 15-24.

Weinbruch, S., 1987, Messungen ueber die Wachstumsgfeschwindigkeit von Sinteröhrchen in einem Stollen (Measurements of the growth rates of stalactites in a tunnel): Die Höhle, v. 38, p. 7-8.

Wells, A.W., 1971, Cave calcite: Studies in Speleology, v. 2, p. 129-148.

Went, F.W., 1969, Fungi associated with stalactite growth: Science, v. 166, p. 385-386.

White, W.B., 1976, Cave minerals and speleothems, in Ford, T.D., and Cullingford, C.H.D., eds., The Science of Speleology: London, Academic Press, p. 267-327.

Whitehead, N.E., Ditchburn, R.G., Williams, P.W. & McCabe, W.J., 1999, 231Pa and 230Th contamination at zero age: a possible limitation on U/Th series dating of speleothem material: Chemical Geology, v. 156, p. 359-366.

Wilson, J.R., 1984, Speleothems as examples of chemical equilibrium processes: Jour. Geol. Education, v. 32, p. 86-88.

Wójcik, Z., 1958, Sand stalagmites and concretions in the Studnisko cave (Central Poland): Proceedings of the Second International Congress of Speleology, Bari, p. 477-484.

Woodhead, J., et al., 2010, Speleothem climate records from deep time? Exploring the potential with an example from the Permian: Geology, v. 38, p. 455-458.

Yonge, C.J., Ford, D.C., Gray, J.P., and Schwarcz, H.P., 1985, Stable isotope studies of cave seepage water: Chemical Geology (Isotope Geoscience Section), v. 58, p. 97-105.

Zhou, G.-T., and Zheng, Y.-F., 2003, An experimental study of oxygen isotope fractionation between inorganically precipitated aragonite and water at low temperatures. Geochimica et Cosmochimica Acta, v. 67, p. 387-399.

Back to the Index to the Atlas of Speleothem Microfabrics