Some Fundamentals of Mineralogy and Geochemistry

Activity and activity coefficients

Activity coefficients γ_i are related to the activity a_i of an ion i by the equation

$$ a_i = \gamma_i m_i $$

where m_i is the concentration of ion i. The activity coefficient γ_i represents the ratio of the activity of ion i to the concentration of ion i, and it is used to correct for the effects of ion interaction and non-ideality of a solution on the activity of the ions.

The problem with reality is that we can't see the activity of individual ions, but we can determine the activity coefficient γ_i. For a given reaction, the activity coefficient γ_i for an ion i in a solution suggests that of all the individuals of an ion i or M^{z+} or Y^{z-}, some are involved in complexes and thus unavailable to participate in chemical reactions. Thus only some of the individuals of the ion M^{z+} or Y^{z-} are available to participate in chemical reactions.

For example, in the schematic sketch at right, there are twelve individuals of the blue ion M. Of those twelve, four are in complexes, and only eight are in the hydrated or aquo-ion condition that we will assume lets them be available for reaction. Thus, rather than using concentration to predict the ion's behavior in a reaction, we use the activity to better estimate the individuals actually available for reaction. This proportionality is

$$ \left(\frac{1}{m} \right) \left(\frac{1}{\gamma} \right) = \frac{1}{a} $$

where a is the activity of the ion. Thus, rather than using concentration, we use the activity coefficient to predict the ion's behavior in a reaction.