Speciation of inorganic carbon in aqueous solution

CO₂ dissolves in water:

 $CO_2(g) \longrightarrow CO_2(aq)$ (same as $CO_2 \cdot H_2O$)

Dissolved CO₂ and water react to form carbonic acid:

(b)
$$CO_2(aq) + H_2O --> H_2CO3$$

$$K=10^{-2.5}$$
 to 10^{-3}

The small value of K means that equilibrium is far to the left in Reaction b. Thus most CO₂(aq) stays as CO2(aq) - most remains as the hydrated linear CO2 molecule (see below) rather than becoming a planar triangular ${\rm CO_3}^{2^-}$ ion complexed with two H+s. Most geochemists simplify by lumping the hydrated CO_2 and the true H_2CO_3 as $H_2CO_3^*$:

$$[H_2CO_3^*] = [CO_2(aq)] + [H_2CO_3]$$

Thus we usually write a third equation that combines (a) and (b):

(c)
$$CO_2(g) + H_2O --> H_2CO_3^*$$

$$K_{CO2} = \frac{aH_2CO_3^*}{PCO_2}^* = \frac{At \ 20^{\circ}C}{10^{-1.5}}$$

(d)
$$H_2CO_3^* --> H^+ + HCO_3$$

(c)
$$CO_2(g) + H_2O --> H_2CO_3^*$$
 $K_{CO2} = \frac{2}{PCO_2}^3 = 10^{-1.5}$
The carbonic acid can dissociate to give bicarbonate:
(d) $H_2CO_3^* --> H^+ + HCO_3^ K_1 = \frac{aH^+ \cdot aHCO_3^-}{aH_2CO_3^*} = 10^{-6.4}$

(e)
$$HCO_3^- --> H^+ + CO_3^2$$

And bicarbonate can dissociate to give carbonate:
(e)
$$HCO_3^- --> H^+ + CO_3^{2-}$$
 $K_1 = \frac{10^{-50.5}}{aH_2CO_3^*} = 10^{-50.5}$
 $K_2 = \frac{aH^+ \cdot aCO_3^{2-}}{aHCO_3^{-}} = 10^{-10.4}$

The presence of H⁺ as a product in d and e means that both reactions proceed to the right much more at higher pH.

